4-1

a. Ethane in the staggered conformation has 2 C_3 axes (the C–C line), 3 perpendicular C_2 axes bisecting the C–C line, in the plane of the two C's and the H's on opposite sides of the two C's. No σ_h, 3 σ_d, i, S_6. Overall, a D_{3d} molecule.

b. Ethane in eclipsed conformation has two C_3 axes (the C–C line), three perpendicular C_2 axes bisecting the C–C line, in the plane of the two C's and the H's on the same side of the two C's. Mirror planes include σ_h and 3 σ_d. Overall, a D_{3h} molecule.

c. Chloroethane in the staggered conformation has only one mirror plane, through both C's, the Cl, and the opposite H on the other C. Overall, a C_s molecule.

d. 1,2-dichloroethane in the gauche conformation has a C_2 axis perpendicular to the C–C bond and splitting the angle between the two C–Cl bonds. Overall, a C_2 molecule. In the trans conformation, it has a C_2 axis perpendicular to the C–C bond and perpendicular to the plane of both Cl's and both C's, a σ_h plane through both Cl's and both C's, and an inversion center. Overall, a C_{2v} molecule.

4-2

a. Ethylene is a planar molecule, with C_2 axes through the C's, and perpendicular to the C–C bond both in the plane of the molecule and perpendicular to it. It also has a σ_h plane and two σ_d planes (arbitrarily assigned). Overall, a D_{2h} molecule.

b. Chloroethylene is also a planar molecule, with the only symmetry element the mirror plane of the molecule. Therefore, a C_s molecule.

c. 1,1-dichloroethylene has a C_2 axis coincident with the C–C bond, and two mirror planes, one the plane of the molecule and one perpendicular to the plane of the molecule through both C's. Overall, a C_{2v} molecule.

cis-1,2-dichloroethylene has a C_2 axis perpendicular to the C–C bond and in the plane of the molecule, two mirror planes (one the plane of the molecule and one perpendicular to the plane of the molecule and perpendicular to the C–C bond). Overall, a C_{2v} molecule.

trans-1,2-dichloroethylene has a C_2 axis perpendicular to the C–C bond and perpendicular to the plane of the molecule, a mirror plane in the plane of the molecule, and an inversion center. Overall, a C_{2h} molecule.
1,1'-Dichloroferrocene has a C_2 axis parallel to the rings, through the Fe and perpendicular to the Cl–Fe–Cl σ_h mirror plane. It also has an inversion center. Overall, C_{2h}.

Dibenzenechromium has collinear C_6, C_3, and C_2 axes perpendicular to the rings, six perpendicular C_2 axes, and a σ_h plane, making it a D_{6h} molecule. It also has three σ_v and three σ_d planes, S_3 and S_6 axes, and an inversion center.

Benzenediphencylchromium has a mirror plane through the Cr and the diphenyl bridge bond and no other symmetry elements, so it is a C_s molecule.

H_3O^+ has the same symmetry as NH_3, a C_3 axis, and three σ_v planes for a C_{3v} molecule.

O_2F_2 has a C_2 axis perpendicular to the O–O bond and perpendicular to a line connecting the fluorines. With no other symmetry elements, it is a C_2 molecule.

Formaldehyde has a C_2 axis collinear with the C=O bond, a mirror plane including all the atoms and another perpendicular to the first and including the C and O atoms. Overall, C_{2v}.

S_8 has C_4 and C_2 axes perpendicular to the average plane of the ring, four C_2 axes through opposite bonds, and four mirror planes perpendicular to the ring, each including two S atoms. Overall, D_{4d}.

Borazine has a C_3 axis perpendicular to the plane of the ring, three perpendicular C_2 axes, and a horizontal mirror plane. Overall, D_{3h}.

Tris(oxalato)chromate(III) has a C_3 axis and three perpendicular C_2 axes, each splitting a C–C bond and passing through the Cr. Overall, D_3.

A tennis ball has three perpendicular C_2 axes (one through the narrow portions of each segment, the others through the seams) and two mirror planes including the first rotation axis. Overall, D_{2d}.
4-8 a. VOCl₃ has C_{3v} symmetry.
 b. PCl₃ has C_{3v} symmetry.
 c. SOF₄ has C_{2v} symmetry
 d. ClO₂⁻ has C_{2v} symmetry.
 e. ClO₅⁻ has C_{3v} symmetry.
 f. P₄O₆ has T_d symmetry.

b. a. PH₃ has C_{3v} symmetry.
 b. H₂Se has C_{2v} symmetry.
 c. SeF₄ has C_{2v} symmetry.
 d. PF₅ has D_{3h} symmetry.
 e. ICl₄⁻ has D_{4h} symmetry.
 f. XeO₃ has C_{3v} symmetry.
 g. NO₅⁻ has D_{3h} symmetry.
 h. SnCl₂ has C_{2v} symmetry in the vapor phase.
 i. PO₄³⁻ has T_d symmetry.
 j. SF₆ has O_h symmetry.
 k. IF₅ has C_{4v} symmetry.
 l. ICl₃ has C_{2v} symmetry.
 m. S₂O₃²⁻ has C_{3v} symmetry.
 n. BF₂Cl has C_{2v} symmetry.

4-10 a. p_z has C_{nv} symmetry. Ignoring the difference in sign between the two lobes, it is D_{2h}.
 b. d_{xy} has D_{2h} symmetry. Ignoring the signs, it is D_{4h}.
 c. $d_{x^2-y^2}$ has D_{2h} symmetry. Ignoring the signs, it is D_{4h}.
 d. d_{z^2} has D_{2h} symmetry.