1. When this cyclohexanone is dissolved in benzene, $J_{AB} = 3$ Hz, but when it is dissolved in methanol, $J_{AB} = 11$ Hz.
 a. What are the conformations in these two solvents?
 b. Why are they different?

2. The 400 MHz 1H spectrum of a sample labelled "CD$_2$Cl$_2"$ is shown. Assign and explain the signals, which have a chemical shift of approximately 5.2 ppm. The scale markers are 5 Hz each.

3. Give complete assignments for the non-aromatic carbons of this compound. The multiplicities refer only to C-H splittings.

\[
\begin{align*}
^{13}C & \quad \delta \text{ (ppm)} \\
207.3 & \quad s \\
173.2 & \quad s \\
69.3 & \quad t \quad J_{CP} = 7 \text{ Hz} \\
69.0 & \quad t \quad J_{CP} = 7 \text{ Hz} \\
68.5 & \quad d \quad \text{Attached to a } ^1H \text{ signal at 4.01 ppm (dt, 2 and 7 Hz)} \\
65.8 & \quad d \quad \text{Attached to a } ^1H \text{ signal at 4.19 ppm (qn, 6.5 Hz)} \\
61.0 & \quad d \quad J_{CP} = 161 \text{ Hz} \\
51.8 & \quad d \\
41.3 & \quad t \\
21.9 & \quad q \\
\end{align*}
\]

4. Assign and interpret the major features of the two multiplets from the 195Pt-1H spectrum of the complex shown. The bar represents 1000 Hz for both multiplets.
5. Assign and interpret the 300 MHz 1H NMR spectrum of this compound as fully as possible. Can you draw any conclusions about the conformation? (The expanded multiplets A-G are all plotted to the same height.)

6. The reaction of $[nBu_4N][BF_4]$ with excess TaF$_5$ produces $[nBu_4N][TaF_{11}]$. The 19F spectrum is shown below. What is the structure of the anion? Explain. (Hint: The two Ta centers are equivalent and octahedral.)