The a_{1g} and a_{2u} orbitals are much lower in energy than the b_{1u} atomic orbitals, so the bonding orbitals are primarily centered on the rings.
2.5 O more EN than N
 σ bonding - a_1 & b_2
 π bonding - b_1

a_2: O group orbital - nothing of same symmetry as N

$\sigma\tau$ overall

π bonding

LUMO

HOMO

primarily bonding from p orbitals

primarily non bonding

$\sigma\tau$ bonding

from s orbitals

N atomic orbitals

O group orbitals

1. Assume O group orbitals from s orbitals are primarily non-bonding due to lower energy.

2. Assume greater overlap between N p_x and O ($p_z + p_x$) compared to O ($p_y - p_y$) and N(s) - making other a_1 orbitals non-bonding.

3. Assume σ overlap > π overlap.

\[O - N = O \]

1 π bond

2 σ bonds

6 lone pair bonding

1 centered N

5 centered O

all consistent with MO diagram
If the molecule is linear (D_ooh) -

$\sigma_1 (p_y-p_y)$ is no longer σ (in non-bonding)

changes to π bonding

$b_2 (p_y+p_y)$ becomes non-bonding

$a_1, e'(p_z+nN)$ no longer involved in σ-bonding