(35) I. 1. Predict the products for each of the following reactions in aqueous solution.
 2. Put the five reactions in order of reaction rate, from slowest to fastest. Explain your answer.

 a. $V^{3+} + V^{2+} \rightarrow V^{5+} + V^{3+}$

 b. $Fe^{3+} + V^{2+} \rightarrow Fe^{2+} + V^{3+}$

 c. $[Co(NH_3)_5Br]^2+ + V^{2+} \rightarrow [V(H_2O)_5Br]^2+ + [Co(H_2O)_6]^{3+} + 5NH_3$

 d. $[Co(NH_3)_5Br]^2+ + Cr^{2+} \rightarrow [Cr(H_2O)_5Br]^2+ + [Co(H_2O)_6]^{3+} + 5NH_3$

 e. $Cr^{2+} + Cr^{2+} \rightarrow Cr^{2+} + Cr^{3+}$

Reactions a, b, and c are outer sphere electron transfer, because there are no bridging ligands. Reactions c and d have Br⁻ as a potential bridging ligand, therefore probably proceed via an inner sphere mechanism. i.e., a, b, e are slower than c, d

$\underline{c, d}$

V^{2+} is substitutionally inert, while Cr^{2+} is labile.

i.e. d is faster than c

$\underline{a, b, e}$

a and b are $\pi \rightarrow \pi$, while c is $\pi \rightarrow \sigma$

i.e. a and b are faster than c

a has $\Delta\delta = 0$, while b has $\Delta\delta > 0$, i.e. b is faster

$\text{Rates: } e \leq a < b < c < d$
(30) II. Consider the reaction listed below between hydroxide ion and pentaamminechlorocobalt(2+).

1. Predict the final products for the reaction.
2. By what mechanism does the reaction proceed?
3. Write out the mechanism and indicate the rate-determining step.
4. The rate expression for this reaction is
 \[
 -d\left[\text{Co(NH}_3\text{)}_5\text{Cl}\right]^2^+ / dt = k_{obs} \left[\text{Co(NH}_3\text{)}_5\text{Cl}\right]^2^+ [\text{OH}^-]
 \]
 Is this consistent with your proposed mechanism? Why or why not?

1. \[
 \text{[Co(NH}_3\text{)}_5\text{Cl]}^2^+ + \text{OH}^- \rightarrow \text{[Co(NH}_3\text{)}_5\text{OH]}^2^+ + \text{Cl}^-\n \]

2. Dissociative conjugate base mechanism

3. \[
 \text{[Co(NH}_3\text{)}_5\text{Cl]}^2^+ + \text{OH}^- \xrightleftharpoons[K_{eq}]{k_{eq}} \text{[Co(NH}_3\text{)}_4\text{(NH}_2\text{)}\text{Cl]}^+ + \text{H}_2\text{O}\n \]

 Rate-determining step

4. \[
 \text{Rate } p_{II} = k_{eq} \left[\text{Co(NH}_3\text{)}_4\text{(NH}_2\text{)}\text{Cl}\right]^+\n \]

 From first step

 \[
 \text{but } \text{[Co(NH}_3\text{)}_4\text{(NH}_2\text{)}\text{Cl]}^+ = K_{eq} \left[\text{Co(NH}_3\text{)}_5\text{Cl}^2^+] [\text{OH}^-]\n \]

 Substituting,

 \[
 \text{Rate} = k_{eq} K_{eq} \left[\text{Co(NH}_3\text{)}_5\text{Cl}^2^+] [\text{OH}^-]\n \]

 Which is consistent with the observed rate law.
III. The reaction below (where Pr = n-propyl) can be carried out in either hexane or methanol.

\[\text{trans-PtCl}_2(\text{PPr}_3)(\text{NHEt}_2) + \text{NHEt}_2 \rightarrow \text{trans-PtCl}_2(\text{PPr}_3)(\text{*NHEt}_2) + \text{NHEt}_2 \]

The observed rate constants obtained are plotted against the concentration of \text{*NHEt}_2 in the following figure.

1. Why is the NHEt_group replaced in the molecule instead of Cl\(^-\) or PPr\(_3\)\(^-\)?

 \text{PPr}_3 is a stronger trans director than the other ligands.

2. Explain the plots above for each of the solvents used.

 Substitution of square planar complexes normally involves competing reactions — 1) direct attack by the entering ligand and attack by the solvent.

 Therefore, the rate expression is of the form:

 \[\text{rate} = (k_1 + k_2 [\text{Et}_2\text{NH}]) [\text{trans-PtCl}_2(\text{PPr}_3)(\text{NHEt}_2)] \]

 Hexane is not very effective at coordinating to the metal, so the reaction proceeds entirely by the direct attack of the ammine (as indicated by the y-intercept of 0).

 Methanol is so effective at coordinating to the metal, that there is no contribution from attack by ammine (as indicated by slope = 0).